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Abstract 

Crystalline trimethylsilylcyclopentadienylthallium(I) complexes [Tl( /.q : q- 
C,H,RR’)], (I: R = SiMe,, R’ = H, n = co; II: R = SiMe, = R’, n = 6) are ob- 
tained in high yield from TlOEt and C,H,RR’ in C,H, at ca. 20’ C; single crystal 
X-ray data reveal I to be a chain polymer and II a cyclic hexamer (Tl atoms at the 
vertices of ,a regular hexagon), with Tl-C(cent) (C(cent) = centroid of C, ring) 2.71 
and 2.84 A for I and 2.74-2.78 A for II. C(cent)-Tl-C(cent) 149” for I and 
127-133O for II, and Tl-C(cent)-Tl 178” for I and 169-173” for II. 

Cyclopentadienylthallium(1) compounds are key organometallic reagents, being 
widely employed as precursors of cyclopentadienyls of other metals [l]. Surprisingly, 
there is little structural information available on (TlCp”), [2], and some is mislead- 
ing [3]. 

We now report (1) a convenient high yield synthesis (> 80% of pure crystalline 
material) of Tl’ mono- and bis-(trimethylsilyl)cyclopentadienyls (Tl(p-q : q- 
C,H,RR’)], (I: R = SiMe,, R’= H, and n = cc; II: R = SiMe, = R’, n = 6) **, 

* Dedicated to Professor Jean Tirouflet in recognition of his important contributions to organometahic 
chemistry. 

* * M.p. I 115-116 o C (dec.) (Lit., 116 o C [3]), II (dec.) > 120 o C. Characterisation: (a) ‘H NMR at ca. 
300 K (C,Ds, external SiMe,, 300 MHz): I: 6 0.28 (9H, s, SiMe,), 6.25 (4H, m, CH); II 0.28 (18H, s, 
SiMe,), 6.38 (2H, m, H,,), 6.43 (lH, m, Ha); (b) 13C NMR (C,D,, 75.47 MHz): I: 6 1.53 (SiMe,), 
111.4 (C(3,4)), 114.8 (C(2,5)), 118.6 (C(l)-SiMe3); II: 1.6 (SiMes), 117.6 (C(4,5)), 121.2 (C(2)), 122.2 
(C(1,3)-SiMes): (c) m/e I: 342 (M+, 63) 327 [(M-Me)+, 181, 205 (TI’, 100%); II: 414 (M+, la), 
399 [(M-Me)+, 111, 205 (TI’, 100%); (d) analytical data; (I): Found: C, 28.1; H, 3.75. CsH,,SiTI 
cakd.: C, 28.1; H, 3.84%; (II): Found: C, 31.8; H, 5.00. C,,H,,Si,Tl cakd.: C, 31.9; H, 5.11%. 
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Fig. 1 (continued). 

from the readily available TI’ ethoxide (eq. l), a method which appears to have some 
generality (see also ref. 1) (e.g., for (TICpx), with Cpx = C,H5 or &Me,); (ii) the 
X-ray structures of crystalline complexes I (Fig. 1) and II (Fig. 2) *; and (iii) their 
high field ‘H and 13C NMR spectra * *, which show no evidence for SiMe, 

* Crystal data and structure solutions for [IQ-n: n-CsH,SiMes)], (I) and in square brackets for 
[Tl( a-7: n-C,Hs(SiMes),-1,3}], (II). CsH,,SiTl [C&H,,Si,Jl,], orthorhombic [tetragonal], space 
group Pcub [14,/a], (I 24.12(2) [22.09(l)], b 10.701(7), c 8.216(5) [40.40(2)] A, Z = 8 [8], 0, 2.14 
[1.67] g cme3, 552 [2165] “observed” reflections { 2 > 30(Z)}, 2&,,, 45 [50] “, R = 0.072 [0.083], 
R, = 0.063 [O.OSS]; Mo-K, radiation [T 295 K] using a Syntex P2, diffractometer. 

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the 
Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cam- 
bridge CB2 1EW (Great Britain). 

* * See footnote p. Cl. 



Fig. 2. The X-ray structure, and atom Iab&ing scheme, for crystalline [ll{ 1~_71: ~-C~~~(SiMe~)~-l,3}]~ 
(II), showing 20% thermal ellipsoids for the non-hydrogen atoms; for relevant dimensions, see Table 2. 

ring-whizzing in C,D, at ambient temperature (cf. [3], the contrary assertion for I, 
made on the basis of the observation of a singlet ring proton signal at low field). 

TlOEt + C,H,RR’ cay:c f 5 fTl(p-T : rt-C,H,RR’)] n -1 + EtOH (11 

(I:R=SiMe,,R’=H,n=co; 
II: R=SiMe,=R’, n=6) 

Compounds I and II are sparingly soluble in cold C,H, (ca. 2.5 g 1-l; cf., the 
pentane-soluble fTl(~-q : n-CsMe&) [4]) but, unlike [T&H,)],, have good 
solubility in hot benzene or toluene (from which single crystals were grown). They 
are probably monomers in the gas phase (mass s~ctromet~ *), and hence are 



c5 

Table 1 

Comparative X-ray data for crystalline ]Tl( ~7 : q-CSH ,RR’ )] n and [Tl(pq : q-C, h&J] n 

R, R’ n TI-C(cent) o TI-C(eent) C(cent)- Rel. conformation Ref. 

(A) -TI TI-C(cent) of R(R’) substituents 

(“) (“) 

H, H do 3.19 137 (0.5) ca. 100 - 66 
H, C(CN)=CQZN), 03 3.01,3.06 149 113.6 Staggered, rrans(III) p 7 
H, SiMe, CQ 2.71,2.84 178 149 Gauche (III) e This work 

SiMe,, SiMe, 6 2.74, 2.78 163,169 127,133 (see Fig. 2) This work 

[TQ-n: t&Me,)], ee 2.91,2.99 ’ ’ Staggered d 4 

’ C(cent) refers to the centroid of the C, ring. ‘An early 2-dimensional study. ’ TI-Tl’-TI” 142.8(l), 
148,2(1)O. d Uncertainty, due to crystai decomposition in X-ray beam. 

t Sit&~ 

volatile, b.p. ca. 30 ‘C/10-’ Torr, cf., also refs. 3 and 4. That the degree of 
polymerisation n of crystalline [Tl(~q : +Z,H,RR’)], is now shown to fall with 
increasing SiMe, substitution in the C,-ring neatly illustrates the general principle 
that ~pop~~~ty and volatility (or covalent character, as judged also by decreased 
tendency for molecular aggregation) for cyclopentadienylmetal complexes increases 
with increasing SiMe, substitution [5]. (For this reason, the ligands (n-C$H,SiMe,)-, 
and especially (n-C,H,(SiMe,),-13) [5], already have a distinctive role in 
organometallic chemistry, complementary to (&Me,)-.) Indeed, the trisub- 
stituted derivative ~(~-C~H~R~-l,2,4) (R = SiMe,) is monome~c in cold C,H, 
(cryoscopy) and, unlike I or II *, shows 203V20STl-1H (*J and 4J) and 203~205Tl-‘3C 
(3J) coupling in C,D, in its *H and 13C NMR spectra [6] (in [Tl(p-n : $+Me,)],, 
3J(TlH) and 2 and 4J TlC) ( were found [4]); the 13C signals of the ring C’s were not 
clearly observed, a further contrast with I or II *. 

Althou~ a polymeric structure for a cyclopentadienylth~lium(1~ complex T~(.L- 
n: n-C,H,R)], has two precedents, there are notable differences between that for 
R = SiMe, (I) (Fig. 1) and R = H [7] (an early-Zdimensional study, the In analogue 
was isostructural) or R = C(CN)=C(CN), [8], Table 1. The “doughnut’‘-shaped 
hexameric complex II (Fig. 2) may arise from a preference for each Tl centre in this 
essentially covalent molecule to employ appro~ately sp2-hybrid a-orbitals (includ- 
ing one occupied by a stereochemically active non-bonding pair of electrons). There 
is an interesting contrast between the structure of the hexamer II and [In( n-C5Me5)], 
[9]; the six metal atoms are arranged in a regular hexagon in the former, but an 
octahedron in the latter. A preliminary microwave examination of gaseous Tljq- 
C,H,) (fine structure not observed) was consistent with a monome~c C,, molecule 
and Tl-C(cent) ea. 2.4 A, assuming C,H, coplanar [lo]. 
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