Preliminary communication

Trimethylsilylcyclopentadienylthallium(I) complexes: syntheses and X-ray structures of the multidecker sandwich complexes $[Tl(\mu-\eta:\eta-C_5H_4SiMe_3)]_n$ and $[Tl{\mu-\eta:\eta-C_5H_3(SiMe_3)_2-1,3}]_6$ (a "doughnut" molecule) *

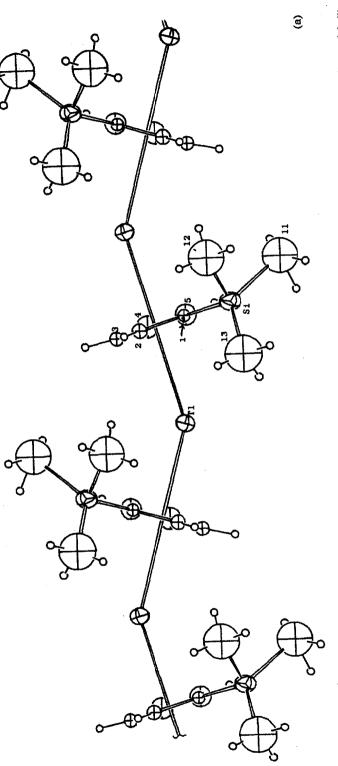
Stephen Harvey, Colin L. Raston, Brian W. Skelton, Allan H. White

Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, W.A. 6009 (Australia)

Michael F. Lappert and Ghanshyam Srivastava

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BN1 9QJ (Great Britain) (Received April 2nd, 1987)

Abstract


Crystalline trimethylsilylcyclopentadienylthallium(I) complexes $[Tl(\mu-\eta : \eta - C_5H_3RR')]_n$ (I: $R = SiMe_3$, R' = H, $n = \infty$; II: $R = SiMe_3 = R'$, n = 6) are obtained in high yield from TIOEt and C_5H_4RR' in C_6H_6 at ca. 20 °C; single crystal X-ray data reveal I to be a chain polymer and II a cyclic hexamer (TI atoms at the vertices of a regular hexagon), with Tl-C(cent) (C(cent) = centroid of C_5 ring) 2.71 and 2.84 Å for I and 2.74–2.78 Å for II. C(cent)-Tl-C(cent) 149° for I and 127–133° for II, and Tl-C(cent)-Tl 178° for I and 169–173° for II.


Cyclopentadienylthallium(I) compounds are key organometallic reagents, being widely employed as precursors of cyclopentadienyls of other metals [1]. Surprisingly, there is little structural information available on $(TlCp^x)_m$ [2], and some is misleading [3].

We now report (1) a convenient high yield synthesis (> 80% of pure crystalline material) of Tl^{I} mono- and bis-(trimethylsilyl)cyclopentadienyls ($Tl(\mu-\eta: \eta-C_5H_3RR')$]_n (I: R = SiMe₃, R' = H, and $n = \infty$; II: R = SiMe₃ = R', n = 6) **,

^{*} Dedicated to Professor Jean Tirouflet in recognition of his important contributions to organometallic chemistry.

^{**} M.p. I 115-116 °C (dec.) (Lit., 116 °C [3]), II (dec.) > 120 °C. Characterisation: (a) ¹H NMR at ca. 300 K (C₆D₆, external SiMe₄, 300 MHz): I: δ 0.28 (9H, s, SiMe₃), 6.25 (4H, m, CH); II 0.28 (18H, s, SiMe₃), 6.38 (2H, m, H_{4,5}), 6.43 (1H, m, H₂); (b) ¹³C NMR (C₆D₆, 75.47 MHz): I: δ 1.53 (SiMe₃), 111.4 (C(3,4)), 114.8 (C(2,5)), 118.6 (C(1)-SiMe₃); II: 1.6 (SiMe₃), 117.6 (C(4,5)), 121.2 (C(2)), 122.2 (C(1,3)-SiMe₃); (c) m/e I: 342 (M⁺, 63), 327 [(M - Me)⁺, 18], 205 (TI⁺, 100%); II: 414 (M⁺, 16), 399 [(M - Me)⁺, 11], 205 (TI⁺, 100%); (d) analytical data; (I): Found: C, 28.1; H, 3.75. C₈H₁₃SiTI calcd.: C, 28.1; H, 3.84%; (II): Found: C, 31.8; H, 5.00. C₁₁H₂₁Si₂Ti calcd.: C, 31.9; H, 5.11%.

1.000

, ;

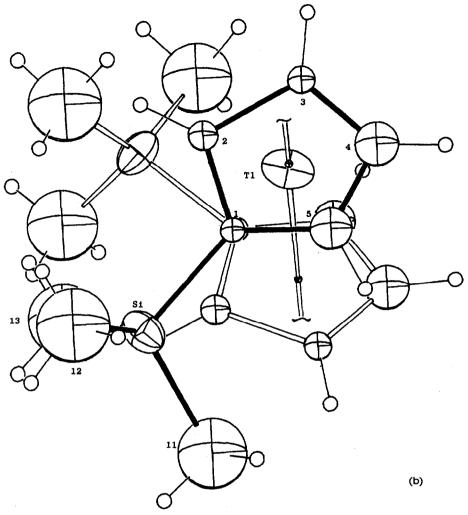


Fig. 1 (continued).

from the readily available TI^{I} ethoxide (eq. 1), a method which appears to have some generality (see also ref. 1) (e.g., for $(TICp^{x})_{m}$ with $Cp^{x} = C_{5}H_{5}$ or $C_{5}Me_{5}$); (ii) the X-ray structures of crystalline complexes I (Fig. 1) and II (Fig. 2) *; and (iii) their high field ¹H and ¹³C NMR spectra **, which show no evidence for SiMe₃

^{*} Crystal data and structure solutions for $[Tl(\mu-\eta; \eta-C_5H_4SiMe_3)]_{\infty}$ (I) and in square brackets for $[Tl\{\mu-\eta; \eta-C_5H_3(SiMe_3)_2-1,3\}]_6$ (II). $C_8H_{13}SiTl[C_{66}H_{126}Si_{12}Tl_6]$, orthorhombic [tetragonal], space group *Pcab* [14₁/a], a 24.12(2) [22.09(1)], b 10.701(7), c 8.216(5) [40.40(2)] Å, Z = 8 [8], D_c 2.14 [1.67] g cm⁻³, 552 [2165] "observed" reflections $\{I > 3\sigma(I)\}$, $2\theta_{max}$ 45 [50]°, R = 0.072 [0.083], $R_w = 0.063$ [0.099]; Mo- K_{α} radiation [T 295 K] using a Syntex P2₁ diffractometer.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain).

^{**} See footnote p. C1.

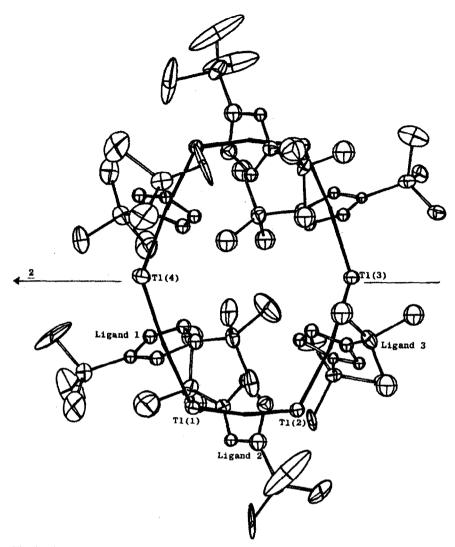


Fig. 2. The X-ray structure, and atom labelling scheme, for crystalline $[T1{\mu-\eta:\eta-C_5H_3(SiMe_3)_2-1,3}]_6$ (II), showing 20% thermal ellipsoids for the non-hydrogen atoms; for relevant dimensions, see Table 1.

ring-whizzing in C_6D_6 at ambient temperature (cf. [3], the contrary assertion for I, made on the basis of the observation of a singlet ring proton signal at low field).

$$TIOEt + C_{5}H_{4}RR' \xrightarrow{C_{6}H_{6}}_{ca.\ 20^{\circ}C} \xrightarrow{1}_{n} [TI(\mu-\eta:\eta-C_{5}H_{3}RR')]_{n} \downarrow + EtOH$$
(1)
(I: R = SiMe₃, R' = H, n = ∞ ;
II: R = SiMe₃ = R', n = 6)

Compounds I and II are sparingly soluble in cold C_6H_6 (ca. 2.5 g 1^{-1} ; cf., the pentane-soluble $[Tl(\mu-\eta:\eta-C_5Me_5)]_{\infty}$) [4]) but, unlike $[Tl(C_5H_5)]_{\infty}$, have good solubility in hot benzene or toluene (from which single crystals were grown). They are probably monomers in the gas phase (mass spectrometry *), and hence are

R, R'	n	Tl-C(cent) ^a (Å)	Tl-C(cent) -Tl (°)	. ,	Rel. conformation of $R(R')$ substituents	Ref.
H, H	00	3.19	137 (0.5)	ca. 100	-	6 ^b
H, C(CN)= $C(CN)_2$	×	3.01, 3.06	149	113.6	Staggered, trans(III) e	7
H, SiMe	00	2.71, 2.84	178	149	Gauche (III) ^e	This work
SiMe ₃ , SiMe ₃	6	2.74, 2.78	163, 169	127, 133	(see Fig. 2)	This work
$[\mathrm{Tl}(\mu - \eta : \eta - \mathrm{C}_{5}\mathrm{Me}_{5})]_{n}$	8	2.91, 2.99	с	c	Staggered d	4

Comparative X-ray data for crystalline $[Tl(\mu-\eta:\eta-C_5H_3RR')]_n$ and $[Tl(\mu-\eta:\eta-C_5Me_5)]_n$

^a C(cent) refers to the centroid of the C₅ ring. ^b An early 2-dimensional study. ^c Tl-Tl'-Tl'' 142.8(1), 148.2(1)°. ^d Uncertainty, due to crystal decomposition in X-ray beam.

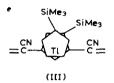


Table 1

volatile, b.p. ca. $30 \,^{\circ} C/10^{-1}$ Torr, cf., also refs. 3 and 4. That the degree of polymerisation *n* of crystalline $[Tl(\mu-\eta: \eta-C_5H_3RR')]_n$ is now shown to fall with increasing SiMe₃ substitution in the C₅-ring neatly illustrates the general principle that lipophilicity and volatility (or covalent character, as judged also by decreased tendency for molecular aggregation) for cyclopentadienylmetal complexes increases with increasing SiMe₃ substitution [5]. (For this reason, the ligands $(\eta-C_5H_4SiMe_3)^-$, and especially $(\eta-C_5H_3(SiMe_3)_2-1,3)^-$ [5], already have a distinctive role in organometallic chemistry, complementary to $(\eta-C_5Me_5)^-$.) Indeed, the trisubstituted derivative $Tl(\eta-C_5H_2R_3-1,2,4)$ ($R = SiMe_3$) is monomeric in cold C_6H_6 (cryoscopy) and, unlike I or II *, shows $^{203,205}TI^{-1}H$ (2J and 4J) and $^{203,205}TI^{-13}C$ (3J) coupling in C_6D_6 in its ^{1}H and ^{13}C NMR spectra [6] (in $[Tl(\mu-\eta: \eta-C_5Me_5)]_{\infty}$, $^3J(TIH)$ and $^{2 \text{ and } 4}J(TIC)$ were found [4]); the ^{13}C signals of the ring C's were not clearly observed, a further contrast with I or II *.

Although a polymeric structure for a cyclopentadienylthallium(I) complex Tl(μ - η : η -C₅H₄R)]_n has two precedents, there are notable differences between that for R = SiMe₃ (I) (Fig. 1) and R = H [7] (an early-2-dimensional study, the In analogue was isostructural) or R = C(CN)=C(CN)₂ [8], Table 1. The "doughnut"-shaped hexameric complex II (Fig. 2) may arise from a preference for each Tl centre in this essentially covalent molecule to employ approximately sp^2 -hybrid σ -orbitals (including one occupied by a stereochemically active non-bonding pair of electrons). There is an interesting contrast between the structure of the hexamer II and [In(η -C₅Me₅)]₆ [9]; the six metal atoms are arranged in a regular hexagon in the former, but an octahedron in the latter. A preliminary microwave examination of gaseous Tl(η -C₅H₅) (fine structure not observed) was consistent with a monomeric C_{5v} molecule and Tl-C(cent) ca. 2.4 Å, assuming C₅H₅ coplanar [10].

Acknowledgement. We thank the following for support: the British Council and the Indian U.G.C. (G.S.), Australian Research Grants Scheme (Perth), and S.E.R.C. (Sussex).

References

- 1 Cf., W.C. Spink and M.D. Rausch, J. Organomet. Chem., 308 (1986) C1; and refs. therein; A.J. Nielson, C.E.F. Ricard, and J.M. Smith, Inorg. Synth., 24 (1987) 97 (from Tl₂SO₄, in a 2-step synthesis).
- 2 Cf., H. Kurosawa, Ch. 8 in G. Wilkinson, F.G.A. Stone, and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Vol. 1; A. McKillop and E.C. Taylor, Adv. Organomet. Chem., 11 (1973) 147; A.G. Lee, Ch. 1 in E.I. Becker and M. Tsutsui (Eds.), Organometallic Reactions, Wiley, New York, 1975, Vol. 5.
- 3 H.P. Fritz and F.H. Köhler, J. Organomet. Chem., 30 (1971) 177.
- 4 H. Werner, H. Otto, and H.J. Kraus, J. Organomet. Chem., 315 (1986) C57.
- 5 Cf. M.F. Lappert, A. Singh, J.L. Atwood, and W.E. Hunter, J. Chem. Soc., Chem. Commun., (1981) 1190.
- 6 P. Jutzi and W. Leffers, J. Chem. Soc., Chem. Commun., (1985) 1735.
- 7 E. Frasson, F. Menegus, and C. Panattoni, Nature, 199 (1963) 1087.
- 8 M.B. Freeman, L.G. Sneddon, and J.C. Huffman, J. Am. Chem. Soc., 99 (1977) 5194.
- 9 O.T. Beachley, M.R. Churchill, J.C. Fettinger, J.C. Pazik, and L. Victoriano, J. Am. Chem. Soc., 108 (1986) 4666.
- 10 J.K. Tyler, A.P. Cox, and J. Sheridan, Nature, 183 (1959) 1182.